Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
arxiv; 2023.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2307.09820v1

ABSTRACT

We use data from 107 Italian provinces to characterize and compare mortality patterns in the first two COVID-19 epidemic waves, which occurred prior to the introduction of vaccines. We also associate these patterns with mobility, timing of government restrictions, and socio-demographic, infrastructural, and environmental covariates. Notwithstanding limitations in the accuracy and reliability of publicly available data, we are able to exploit information in curves and shapes through Functional Data Analysis techniques. Specifically, we document differences in magnitude and variability between the two waves; while both were characterized by a co-occurrence of 'exponential' and 'mild' mortality patterns, the second spread much more broadly and asynchronously through the country. Moreover, we find evidence of a significant positive association between local mobility and mortality in both epidemic waves and corroborate the effectiveness of timely restrictions in curbing mortality. The techniques we describe could capture additional signals of interest if applied, for instance, to data on cases and positivity rates. However, we show that the quality of such data, at least in the case of Italian provinces, was too poor to support meaningful analyses.


Subject(s)
COVID-19
2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1062190.v2

ABSTRACT

We employed a multifaceted computational strategy to identify the genetic factors contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing (WES) dataset of a cohort of 2000 Italian patients. We coupled a stratified k -fold screening, to rank variants more associated with severity, with training of multiple supervised classifiers, to predict severity on the basis of screened features. Feature importance analysis from tree-based models allowed to identify a handful of 16 variants with highest support which, together with age and gender covariates, were found to be most predictive of COVID-19 severity. When tested on a follow-up cohort, our ensemble of models predicted severity with good accuracy (ACC=81.88%; ROC_AUC=96%; MCC=61.55%). Principal Component Analysis (PCA) and clustering of patients on important variants orthogonally identified two groups of individuals with a higher fraction of severe cases. Our model recapitulated a vast literature of emerging molecular mechanisms and genetic factors linked to COVID-19 response and extends previous landmark Genome Wide Association Studies (GWAS). It revealed a network of interplaying genetic signatures converging on established immune system and inflammatory processes linked to viral infection response, such as JAK-STAT, Cytokine, Interleukin, and C-type lectin receptor signaling. It also identified additional processes cross-talking with immune pathways, such as GPCR signalling, which might offer additional opportunities for therapeutic intervention and patient stratification. Publicly available PheWAS datasets revealed that several variants were significantly associated with phenotypic traits such as “Respiratory or thoracic disease”, confirming their link with COVID-19 severity outcome. Taken together, our analysis suggests that curated genetic information can be effectively integrated along with other patient clinical covariates to forecast COVID-19 disease severity and dissect the underlying host genetic mechanisms for personalized medicine treatments.


Subject(s)
COVID-19 , Respiratory Tract Infections , Thoracic Diseases
3.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2008.04700v1

ABSTRACT

We investigate patterns of COVID-19 mortality across 20 Italian regions and their association with mobility, positivity, and socio-demographic, infrastructural and environmental covariates. Notwithstanding limitations in accuracy and resolution of the data available from public sources, we pinpoint significant trends exploiting information in curves and shapes with Functional Data Analysis techniques. These depict two starkly different epidemics; an "exponential" one unfolding in Lombardia and the worst hit areas of the north, and a milder, "flat(tened)" one in the rest of the country -- including Veneto, where cases appeared concurrently with Lombardia but aggressive testing was implemented early on. We find that mobility and positivity can predict COVID-19 mortality, also when controlling for relevant covariates. Among the latter, primary care appears to mitigate mortality, and contacts in hospitals, schools and work places to aggravate it. The techniques we describe could capture additional and potentially sharper signals if applied to richer data.


Subject(s)
COVID-19
4.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2006.03141v3

ABSTRACT

In 2020, countries affected by the COVID-19 pandemic implemented various non-pharmaceutical interventions to contrast the spread of the virus and its impact on their healthcare systems and economies. Using Italian data at different geographic scales, we investigate the relationship between human mobility, which subsumes many facets of the population's response to the changing situation, and the spread of COVID-19. Leveraging mobile phone data from February through September 2020, we find a striking relationship between the decrease in mobility flows and the net reproduction number. We find that the time needed to switch off mobility and bring the net reproduction number below the critical threshold of 1 is about one week. Moreover, we observe a strong relationship between the number of days spent above such threshold before the lockdown-induced drop in mobility flows and the total number of infections per 100k inhabitants. Estimating the statistical effect of mobility flows on the net reproduction number over time, we document a 2-week lag positive association, strong in March and April, and weaker but still significant in June. Our study demonstrates the value of big mobility data to monitor the epidemic and inform control interventions during its unfolding.


Subject(s)
COVID-19
5.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2004.05222v2

ABSTRACT

The rapid dynamics of COVID-19 calls for quick and effective tracking of virus transmission chains and early detection of outbreaks, especially in the phase 2 of the pandemic, when lockdown and other restriction measures are progressively withdrawn, in order to avoid or minimize contagion resurgence. For this purpose, contact-tracing apps are being proposed for large scale adoption by many countries. A centralized approach, where data sensed by the app are all sent to a nation-wide server, raises concerns about citizens' privacy and needlessly strong digital surveillance, thus alerting us to the need to minimize personal data collection and avoiding location tracking. We advocate the conceptual advantage of a decentralized approach, where both contact and location data are collected exclusively in individual citizens' "personal data stores", to be shared separately and selectively, voluntarily, only when the citizen has tested positive for COVID-19, and with a privacy preserving level of granularity. This approach better protects the personal sphere of citizens and affords multiple benefits: it allows for detailed information gathering for infected people in a privacy-preserving fashion; and, in turn this enables both contact tracing, and, the early detection of outbreak hotspots on more finely-granulated geographic scale. Our recommendation is two-fold. First to extend existing decentralized architectures with a light touch, in order to manage the collection of location data locally on the device, and allow the user to share spatio-temporal aggregates - if and when they want, for specific aims - with health authorities, for instance. Second, we favour a longer-term pursuit of realizing a Personal Data Store vision, giving users the opportunity to contribute to collective good in the measure they want, enhancing self-awareness, and cultivating collective efforts for rebuilding society.


Subject(s)
COVID-19 , Hallucinations
SELECTION OF CITATIONS
SEARCH DETAIL